Big Data No Trabalho Book PDF, EPUB Download & Read Online Free

Big data no trabalho

Big data no trabalho

Author: Thomas H. Davenport
Publisher: Elsevier Brasil
ISBN: 8535279156
Pages: 232
Year: 2014-07-30
Com dezenas de exemplos de empresas, incluindo UPS, GE, Amazon, United Healthcare, Citigroup e muitas outras, este livro vai ajudar você a explorar todas as oportunidades - desde melhorar as decisões, os produtos e os serviços até fortalecer o relacionamento com os clientes. Aqui você aprenderá a colocar o big data em ação na sua própria organização para que vocês também se beneficiem do poder desse novo recurso em constante evolução. Leia este livro e entenda: Por que o big data é importante para você e a sua organização; Quais tecnologias são necessárias para gerenciar o big data; Como o big data mudará o seu emprego, a sua empresa e o seu setor; Como contratar, em regime permanente ou temporário, e como formar pessoas capazes de explorar o big data; Os principais fatores de sucesso na implementação de qualquer projeto de big data;Como o big data está levando a uma nova abordagem de gerenciamento do analytics.Big Data no trabalho cobre todas as bases: o que o big data significa do ponto de vista técnico, do consumidor e da gestão; quais oportunidades e custos esse novo conceito implica; onde o big data pode ter um impacto concreto nos negócios; e quais aspectos desse conceito foram exageradamente badalados.
Big Data Analytics with R

Big Data Analytics with R

Author: Simon Walkowiak
Publisher: Packt Publishing Ltd
ISBN: 1786463725
Pages: 506
Year: 2016-07-29
Utilize R to uncover hidden patterns in your Big Data About This Book Perform computational analyses on Big Data to generate meaningful results Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases, Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market Who This Book Is For This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows. It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R. What You Will Learn Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform In Detail Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing. The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O. Style and approach This book will serve as a practical guide to tackling Big Data problems using R programming language and its statistical environment. Each section of the book will present you with concise and easy-to-follow steps on how to process, transform and analyse large data sets.
Big Data

Big Data

Author: Viktor Mayer-Schönberger, Kenneth Cukier
Publisher: Houghton Mifflin Harcourt
ISBN: 0544002938
Pages: 240
Year: 2013-03-05
A revelatory exploration of the hottest trend in technology and the dramatic impact it will have on the economy, science, and society at large. Which paint color is most likely to tell you that a used car is in good shape? How can officials identify the most dangerous New York City manholes before they explode? And how did Google searches predict the spread of the H1N1 flu outbreak? The key to answering these questions, and many more, is big data. “Big data” refers to our burgeoning ability to crunch vast collections of information, analyze it instantly, and draw sometimes profoundly surprising conclusions from it. This emerging science can translate myriad phenomena—from the price of airline tickets to the text of millions of books—into searchable form, and uses our increasing computing power to unearth epiphanies that we never could have seen before. A revolution on par with the Internet or perhaps even the printing press, big data will change the way we think about business, health, politics, education, and innovation in the years to come. It also poses fresh threats, from the inevitable end of privacy as we know it to the prospect of being penalized for things we haven’t even done yet, based on big data’s ability to predict our future behavior. In this brilliantly clear, often surprising work, two leading experts explain what big data is, how it will change our lives, and what we can do to protect ourselves from its hazards. Big Data is the first big book about the next big thing. www.big-data-book.com
Administração do Big Data

Administração do Big Data

Author: Alexandre Lopes Machado
Publisher: Senac
ISBN: 8539612283
Pages: 149
Year: 2017-12-04
A Série Universitária foi desenvolvida pelo Senac São Paulo com o intuito de preparar profissionais para o mercado de trabalho. Os títulos abrangem diversas áreas, abordando desde conhecimentos teóricos e práticos adequados às exigências profissionais até a formação ética e sólida. O livro traça um panorama sobre o Big Data, apresentando sua arquitetura e as principais etapas do processo de análise de grandes volumes de dados. Entre os temas abordados, estão a ciência de dados, a ingestão, a modelagem e a mineração de dados e o surgimento de novas fontes com foco na representação visual de dados e analítico (analytics). O livro trata ainda das plataformas de Big Data e de suas aplicações em alguns casos práticos. O objetivo é proporcionar ao leitor uma visão geral sobre os principais fundamentos e conceitos sobre a administração desse tema.
Data Smart

Data Smart

Author: John W. Foreman
Publisher: John Wiley & Sons
ISBN: 1118839862
Pages: 432
Year: 2013-10-31
Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope. Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data. Each chapter will cover a different technique in a spreadsheet so you can follow along: Mathematical optimization, including non-linear programming and genetic algorithms Clustering via k-means, spherical k-means, and graph modularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, and bag-of-words models Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
Arquitetura de Nuvem (AWS)

Arquitetura de Nuvem (AWS)

Author: Manoel Veras
Publisher: Brasport
ISBN: 8574525685
Pages: 416
Year:
A computação de nuvem oferece inúmeros benefícios, incluindo elasticidade, pagamento pelo uso efetivo dos recursos, infraestrutura de autosserviço e automação baseada em APIs. Ela permite que as organizações tenham DATACENTERS automatizados e paguem somente por aquilo que utilizam. A plataforma utilizada para o desenho da arquitetura é a Amazon Web Services (AWS), que é abordada em detalhes e de forma estruturada. A própria Amazon utiliza a arquitetura AWS para operar um dos maiores varejos online do mundo. Empresas como Shell, Samsung, NASA, The New York Times, Grupo Pão de Açúcar, Gol Linhas Aéreas e SulAmérica Seguros já desfrutam dos benefícios da computação de nuvem e estabeleceram novas arquiteturas orientadas pela demanda. O livro traz uma abordagem sobre a construção de um DATACENTER utilizando a Arquitetura De Nuvem e a estratégia adotada foi estruturá-lo em três grandes partes; Aspectos Básicos, com conceitos, infraestrutura, precificação, identidade e acesso Serviços de Infraestrutura, sobre os serviços de computação, armazenamento, rede, banco de dados e gerenciamento; e Aspectos Avançados, cobrindo desenho da arquitetura, governança, segurança e continuidade.
Big Data O Futuro dos Dados e Aplicações

Big Data O Futuro dos Dados e Aplicações

Author: Felipe Nery Rodrigues Machado
Publisher: Editora Saraiva
ISBN: 8536527617
Pages:
Year: 2018-05-15
Este livro se propõe a apresentar os principais fundamentos de Big Data, seu histórico e sua utilização. Explica a diferença existente entre ele e Business Intelligence (BI), o que é Big Data Analytics e Análise Preditiva. Aborda modelos preditivos, Internet das Coisas (IoT) e Machine Learning, bem como a importância do banco de dados Apache Cassandra e sua estrutura. Explica as tecnologias MapReduce e Hadoop, e o papel do cientista de dados e sua forma de atuação. Trata da coleta de dados de redes sociais e da criação de projetos de Big Data. A obra traz ainda casos de sucesso da aplicação de Big Data em segmentos como varejo, mídia, logística, entre outros.
Applying Data Science

Applying Data Science

Author: Gerhard Svolba
Publisher: SAS Institute
ISBN: 163526054X
Pages: 490
Year: 2017-03-29
See how data science can answer the questions your business faces! Applying Data Science: Business Case Studies Using SAS, by Gerhard Svolba, shows you the benefits of analytics, how to gain more insight into your data, and how to make better decisions. In eight entertaining and real-world case studies, Svolba combines data science and advanced analytics with business questions, illustrating them with data and SAS code. The case studies range from a variety of fields, including performing headcount survival analysis for employee retention, forecasting the demand for new projects, using Monte Carlo simulation to understand outcome distribution, among other topics. The data science methods covered include Kaplan-Meier estimates, Cox Proportional Hazard Regression, ARIMA models, Poisson regression, imputation of missing values, variable clustering, and much more! Written for business analysts, statisticians, data miners, data scientists, and SAS programmers, Applying Data Science bridges the gap between high-level, business-focused books that skimp on the details and technical books that only show SAS code with no business context.
The Resurrection of the Son of God

The Resurrection of the Son of God

Author: Nicholas Thomas Wright
Publisher: Fortress Press
ISBN: 0800636155
Pages: 817
Year: 2003
Why did Christianity begin, and why did it take the shape it did? To answer this question -- which any historian must face -- renowned New Testament scholar N. T. Wright focuses on the key points: what precisely happened at Easter? What did the early Christians mean when they said that Jesus of Nazareth had been raised from the dead? What can be said today about this belief? This book, third in Wright's series Christian Origins and the Question of God, sketches a map of ancient beliefs about life after death, in both the Greco-Roman and Jewish worlds. It then highlights the fact that the early Christians' belief about the afterlife belonged firmly on the Jewish spectrum, while introducing several new mutations and sharper definitions. This, together with other features of early Christianity, forces the historian to read the Easter narratives in the gospels, not simply as late rationalizations of early Christian spirituality, but as accounts of two actual events: the empty tomb of Jesus and his "appearances." How do we explain these phenomena? The early Christians' answer was that Jesus had indeed been bodily raised from the dead; that was why they hailed him as the messianic "son of God." No modern historian has come up with a more convincing explanation. Facing this question, we are confronted to this day with the most central issues of the Christian worldview and theology.
Infonomics

Infonomics

Author: Douglas B. Laney
Publisher: Routledge
ISBN: 1351610694
Pages: 322
Year: 2017-09-05
Many senior executives talk about information as one of their most important assets, but few behave as if it is. They report to the board on the health of their workforce, their financials, their customers, and their partnerships, but rarely the health of their information assets. Corporations typically exhibit greater discipline in tracking and accounting for their office furniture than their data. Infonomics is the theory, study, and discipline of asserting economic significance to information. It strives to apply both economic and asset management principles and practices to the valuation, handling, and deployment of information assets. This book specifically shows: CEOs and business leaders how to more fully wield information as a corporate asset CIOs how to improve the flow and accessibility of information CFOs how to help their organizations measure the actual and latent value in their information assets. More directly, this book is for the burgeoning force of chief data officers (CDOs) and other information and analytics leaders in their valiant struggle to help their organizations become more infosavvy. Author Douglas Laney has spent years researching and developing Infonomics and advising organizations on the infinite opportunities to monetize, manage, and measure information. This book delivers a set of new ideas, frameworks, evidence, and even approaches adapted from other disciplines on how to administer, wield, and understand the value of information. Infonomics can help organizations not only to better develop, sell, and market their offerings, but to transform their organizations altogether.
Moneyball (Movie Tie-in Edition) (Movie Tie-in Editions)

Moneyball (Movie Tie-in Edition) (Movie Tie-in Editions)

Author: Michael Lewis
Publisher: W. W. Norton & Company
ISBN: 0393338398
Pages: 317
Year: 2011-08-22
Explains how Billy Beene, the general manager of the Oakland Athletics, is using a new kind of thinking to build a successful and winning baseball team without spending enormous sums of money.
Keeping Up with the Quants

Keeping Up with the Quants

Author: Thomas H. Davenport, Jinho Kim
Publisher: Harvard Business Review Press
ISBN: 142218725X
Pages: 240
Year: 2013-06-11
A renowned thought-leader and a professor of statistics team up to provide the essential tools for enhancing thinking and decision-making in today's workplace in order to be more competitive and successful. 25,000 first printing.
The Complete Guide to Business Analytics (Collection)

The Complete Guide to Business Analytics (Collection)

Author: Thomas H. Davenport, Babette E. Bensoussan, Craig S. Fleisher
Publisher: FT Press
ISBN: 0133091252
Pages: 1105
Year: 2012-10-14
A brand new collection of business analytics insights and actionable techniques… 3 authoritative books, now in a convenient e-format, at a great price! 3 authoritative eBooks deliver comprehensive analytics knowledge and tools for optimizing every critical business decision! Use business analytics to drive maximum value from all your business data! This unique 3 eBook package will help you harness your information, discover hidden patterns, and successfully act on what you learn. In Enterprise Analytics, analytics pioneer Tom Davenport and the world-renowned experts at the International Institute for Analytics (IIA) bring together the latest techniques, best practices, and research on large-scale analytics strategy, technology, implementation, and management. Using real-world examples, they cover everything from building better analytics organizations to gathering data; implementing predictive analytics to linking analysis with organizational performance. You'll find specific insights for optimizing supply chains, online services, marketing, fraud detection, and many other business functions; plus chapter-length case studies from healthcare, retail, and financial services. Next, in the up-to-the-minute Analysis Without Paralysis, Second Edition, Babette E. Bensoussan and Craig S. Fleisher help you succeed with analysis without getting mired in advanced math or arcane theory. They walk you through the entire business analysis process, and guide you through using 12 core tools for making better decisions about strategy and operations -- including three powerful tools covered for the first time in this new Second Edition. Then, in Business and Competitive Analysis, Fleisher and Bensoussan help you apply 24 leading business analysis models to gain deep clarity about your business environment, answer tough questions, and make tough choices. They first walk you through defining problems, avoiding pitfalls, choosing tools, and communicating results. Next, they systematically address both “classic” techniques and the most promising new approaches from economics, finance, sociology, anthropology, and the intelligence and futurist communities. For the first time, one book covers Nine Forces, Competitive Positioning, Business Model, Supply Chain Analyses, Benchmarking, McKinsey 7S, Shadowing, Product Line, Win/Loss, Strategic Relationships, Corporate Reputation, Critical Success Factors, Driving Forces, Country Risk, Technology Forecasting, War Gaming, Event/Timeline, Indications, Warning Analyses, Competitor Cash Flow, ACH, Linchpin Analyses, and more. Whether you're an executive, strategist, analyst, marketer, or operations professional, this eBook collection will help you make more effective, data-driven, profitable decisions! From world-renowned analytics and competitive/business intelligence experts Thomas H. Davenport, Babette E. Bensoussan, and Craig S. Fleisher
Introdução à Ciencia de Dados: mineração de dados e big data

Introdução à Ciencia de Dados: mineração de dados e big data

Author: Amaral, Fernando
Publisher: Alta Books Editora
ISBN: 8576089343
Pages: 320
Year: 2016-10-26
O fenômeno apontado como a quarta revolução industrial e também conhecido como Big Data está trazendo mudanças profundas no mundo em que vivemos. Ainda é difícil fazer previsões precisas de como o fenômeno vai afetar nossas vidas e nosso mundo, mas sabendo que Big Data vai afetar sua vida pessoal, sua casa, seu carro, seu emprego, sua saúde, suas amizades, sua alimentação, seu sono e até seu lazer. Dados produzidos em grande escala, com velocidade e variedade nunca antes imaginados e que a tecnologia atual tem dificuldade para armazenar e processar. Você houve falar de Big Data todos os dias! Mas do que adianta uma montanha de dados se não formos capazes de extrair valor? Big Data vai mudar a forma como uma indústria produz, como um avião voa, como se planta um alimento, como se trata uma doença, como anunciar um produto e até como ir a Marte. Por trás deste fenômeno está o dado eletrônico, que se por um lado a poucas décadas era produzido por alguns poucos equipamentos e tinha um alto custo de armazenamento, hoje é produzido em tudo que é lugar e o custo de armazená-lo é muito baixo, e a cada dia fica mais barato. Como o dado é produzido? Como é armazenado? De que forma é consumido? Como extrair informação e conhecimento? Como tratar aspectos de segurança e privacidade? Esta obra traz uma introdução ao mundo do dado, em um estudo que vem desde sua geração ao descarte, com ênfase especial na sua análise. Esta obra está dividida em duas grandes partes: A primeira parte é uma introdução ao mundo da Ciência de Dados e Big Data, abordando questões que envolvem os modelos pré-relacionais, relacionais e pós-relacionais, como NoSQL, processos de transformação de dados, armazenamento analítico, como o Data Warehouse, e HDFS, sem deixar de tratar de maneira clara a Mineração de Dados e outras técnicas analíticas. A segunda parte é prática, onde o leitor pode implementar os conceitos estudados, desenvolvendo diversas técnicas de análise de dados como Classificação, Agrupamentos, Lei de Benford, entre outras.
Homo Deus

Homo Deus

Author: Yuval Noah Harari
Publisher: HarperCollins
ISBN: 0062464353
Pages: 464
Year: 2017-02-21
NEW YORK TIMES BESTSELLER Yuval Noah Harari, author of the critically-acclaimed New York Times bestseller and international phenomenon Sapiens, returns with an equally original, compelling, and provocative book, turning his focus toward humanity’s future, and our quest to upgrade humans into gods. Over the past century humankind has managed to do the impossible and rein in famine, plague, and war. This may seem hard to accept, but, as Harari explains in his trademark style—thorough, yet riveting—famine, plague and war have been transformed from incomprehensible and uncontrollable forces of nature into manageable challenges. For the first time ever, more people die from eating too much than from eating too little; more people die from old age than from infectious diseases; and more people commit suicide than are killed by soldiers, terrorists and criminals put together. The average American is a thousand times more likely to die from binging at McDonalds than from being blown up by Al Qaeda. What then will replace famine, plague, and war at the top of the human agenda? As the self-made gods of planet earth, what destinies will we set ourselves, and which quests will we undertake? Homo Deus explores the projects, dreams and nightmares that will shape the twenty-first century—from overcoming death to creating artificial life. It asks the fundamental questions: Where do we go from here? And how will we protect this fragile world from our own destructive powers? This is the next stage of evolution. This is Homo Deus. With the same insight and clarity that made Sapiens an international hit and a New York Times bestseller, Harari maps out our future.